
Wire Cell Toolkit
Architecture and Development Status

Brett Viren
Physics Department

Wire Cell Summit 7-9 Dec 2015



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Outline

Prototype vs. Toolkit

Design Goals

Architecture
Concepts
Data Flow Programming

Packages

Status and Summary

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 2 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

WC Prototype vs. WC Toolkit
make it work → make it fast

initial development → long-term improvements
one developer → many developers

Some commonalities and differences:
• C++11, explicit data models, various I/O
• portable, waf-based build, lives in GitHub.

Prototype Toolkit
internal deps tightly coupled pervasive use of abstract interfaces

ROOT intimate independent (only tests + I/O libraries)
interface many main()’s API, single, general-purpose CLI

execution single threaded abstract “data flow programming” engine
configuration hard coded “configurable” interface, JSON files

app construction hard coded DFP graph, dynamic plugin system
maintenance Xin hacking! long-term, multi-developer

unit tests some many

algorithms state of the art playing catch-up

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 3 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Prototype vs. Toolkit

Design Goals

Architecture

Packages

Status and Summary

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 4 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Toolkit Design Goals

Want the toolkit to:
• be portable to multiple (’nix) architectures:

laptop/workstation, Grid, HPC, including GPU.
• support multiprocessing with (more or less) thread-unaware

algorithms.
• dictate interface but not implementation.
• support multiple independent algorithm developers.
• encourage fine-grained unit testing.
• Provide cheap package creation and aggregation.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 5 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Prototype vs. Toolkit

Design Goals

Architecture
Concepts
Data Flow Programming

Packages

Status and Summary

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 6 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Toolkit vs. Framework

Toolkit Framework
main() 7 3

Wire Cell Toolkit does:
• dictate transient data model and active class interfaces.
• provide a structure in which to implement functionality.

Wire Cell Toolkit does not:
• determine user interface,
• enforce an execution model,
• nor enforce file formats.

But it does provide some “batteries included” for all of these.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 7 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

High-level Wire Cell Toolkit Design Concepts

interfaces all toolkit components implement and communicate
through abstract base classes.

data model instances are accessed via const shared pointers to
their interface class for safe memory management.

compute model units (“nodes”) defined as interfaces
consuming and producing data model interfaces.

factory concrete interface instance construction via named
lookup, supports dynamic plugins.

configurable components may accept parameters from a
unified configuration system.

application component aggregation left to developer/user
discretion or through toolkit facilities.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 8 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Interfaces
Interfaces define the verbs and nouns of the Wire Cell language.

Data model examples:
• IData transient data base class.
• IWire, ICell defines wire/cell geometry
• IDepo, IDiffusion simulation intermediates.
• IFrame, ITrace defines waveform data

Compute unit examples:
• ICellMaker, IDrifter, IFramer, ICellSelector are examples of

transformative nodes (eg, IBufferNode, IFunctionNode).
• IWireSource, IFrameSource are source nodes. and

ICellSliceSink sink nodes.
More interfaces exist and more to be added as we progress.

All interface classes go in the package wire-cell-iface.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 9 / 24

https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IData.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IWire.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ICell.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IDepo.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IDiffusion.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IFrame.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ITrace.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ICellMaker.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IDrifter.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IFramer.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IChannelCellSelector.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IBufferNode.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IFunctionNode.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IWireSource.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IFrameSource.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ISourceNode.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ICellSliceSink.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/ISinkNode.h
https://github.com/WireCell/wire-cell-iface


Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Named Factory Method and Plugins - using

NamedFactory provides string-to-object lookup supporting
configuration and application levels.

string cname = "MyClass";
string iname = "my happy instance";
IMyInterface* obj = factory::lookup<IMyInterface>(cname, iname);

• Find an instance implementing an interface by its concrete
class name and an optional instance name.

• Behind the scenes, may use optional plugin system to check
shared libraries for MyClass.

• Identical lookups return same instance, default-construct if
not yet seen.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 10 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Named Factory Method and Plugins - Back end

WIRECELL_NAMEDFACTORY_BEGIN(BoundCells)
WIRECELL_NAMEDFACTORY_INTERFACE(BoundCells, ICellMaker);
WIRECELL_NAMEDFACTORY_END(BoundCells)

• Interface implementation must register with (singleton)
factory at file scope to bind concrete class name to the
interface it implements.

PluginManager& pm = PluginManager::instance();
pm.add("WireCellGen");

• Application or configuration layer must register shared
libraries holding components with a (singleton) plugin
manager.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 11 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Configuration

This is still being developed so still partly conceptual:

• Configurable classes implement IConfigurable and
register with NamedFactory.

• User supplies a JSON file containing a dictionary.
→ keys map to concrete class/instance names.
→ values follow target-specific schema.

• Parsed and interpreted by a configuration manager.
• Data driven interpretation but some special cases:

• plugin manager must be configured early
• execution manager must be instantiated and configured
• execution manager configuration drives the rest.

This dance must be done at application level but will be
presented as a few high-level calls.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 12 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Application

It is up to the application developer to determine the scope and
structure of how Wire Cell Toolkit components are called.

Many Wire Cell Toolkit applications possible:

• A general-purpose wire-cell command line program is
being developed and included with the toolkit.

• External framework modules may be created.
• A backend service is being considered in support of Bee 2.0.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 13 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Data Flow Programming
DFP structures the program as a graph.

vertices compute units (“nodes”)

edges data queues

• Thread safe queues + stateless nodes = “easy” parallel
processing.

• Statefull still possible with concurrency=1 nodes.

• Nodes can be developed and tested in isolation.

• App-level programming by “drawing” the graph.

• Streamed processing can minimize RAM usage.

• Feedback loops may implement iterative flows.

• May instrument graph to collect performance data.

One possible example→

DAQ/MC input
conc = 1

slice cells
conc = N

 raw waveforms

solve slices
conc = N

 hit cells

stack slices
conc = 1

 blobs in slice

make clusters
conc = N

 3D image

pattern recognition
conc = N

 clusters

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 14 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Abstract Execution Model

Wire Cell Toolkit defines abstract nodes and connection
method:
• A node has zero or more input/output “ports”.
• A port carries data of a specific (data model) type.
• A node declares its maximum concurrency.
• Node and port interface classes.
• “Well known” node types defined as mid-level interface

classes.
• IDataFlowGraph implements connection and graph

execution methods.
• Battery included: Intel TBB-based implementation.

This works now but needs some final design polish.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 15 / 24

https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/INode.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IPort.h
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/IDataFlowGraph.h
https://github.com/WireCell/wire-cell-tbb


Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Current package set
wire-cell-

build default source code aggregation and suite-wide build context.

util NamedFactory, PluginManager, ConfigMangaer, Units,
3D vector, special containers.

iface data model and node interface classes.

gen simulation of 4/6 “D”s: Deposit/Drift/Diffuse/Digitize
(Detector response and Deconvolution still in development)

alg reference Wire Cell algorithms ported from prototype.

tbb Intel TBB based DFP execution model implementation.

apps Provided end-user applications.

docs User/developer/installer manual.

sst Celltree file reading/writing.

bio Bee JSON file production.

rio Toolkit ROOT-based I/O.

rootvis ROOT-based visualization.

All are working at some level but are still in development.
Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 16 / 24

https://github.com/WireCell/wire-cell-build
https://github.com/WireCell/wire-cell-util
https://github.com/WireCell/wire-cell-iface
https://github.com/WireCell/wire-cell-gen
https://github.com/WireCell/wire-cell-alg
https://github.com/WireCell/wire-cell-tbb
https://github.com/WireCell/wire-cell-apps
https://github.com/WireCell/wire-cell-docs
https://github.com/WireCell/wire-cell-sst
https://github.com/WireCell/wire-cell-bio
https://github.com/WireCell/wire-cell-rio
https://github.com/WireCell/wire-cell-rio


Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

A Wire Cell Toolkit Package

Three possible products from building a toolkit package:

lib inc/PackageName/*.h and src/*.cxx turned into
shared library+headers.

app apps/main-app.cxx each source file made into an
executable file “main-app”.

test test/test *.cxx each source file built to a test executable file
and run as part of build each time code changes require it.

• Each product type has own dependency tree (see next).

• There is a very low effort barrier to create new packages.

• Consider making a new package before adding to an existing one.

• Also can make new/personal build-aggregation packages to exercise
narrower build contexts.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 17 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Package dependencies

example of allowed library dependencies

util

iface

gen alg appssstbio

example of allowed
test dependencies

util

iface

gen

alg

• No direct coupling among implementation libraries allowed, only loose
via iface.

• iface provides “simple” data model implementation.

• Other packages provide data model imp to optimize memory/CPU (eg,
lazy instantiating).

• Library and app dependencies strictly controlled, tests may violate.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 18 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Hack on your own Wire Cell packages!
1 Make a git repository in GitHub (or wherever you prefer).
2 mkdir -p inc/MyPackageName src test and make a
wscript build file based on existing ones.

3 Fork wire-cell-build to add your package, or make a
personal/reduced equivalent.

4 Implement some existing DFP node interface class or work
with me to develop new ones.

5 If your node makes data, use existing “simple data” (eg)
data model classes, subclass data model interfaces to
implement your own or work with me to extend current data
model.

6 Write unit tests as you develop.
7 Run a full-chain application with the wire-cell command

line program (still in development).

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 19 / 24

https://github.com/WireCell/wire-cell-alg/blob/master/wscript_build
https://github.com/WireCell/wire-cell-build
https://github.com/WireCell/wire-cell-iface/blob/master/inc/WireCellIface/SimpleFrame.h


Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Prototype vs. Toolkit

Design Goals

Architecture

Packages

Status and Summary

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 20 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Current Full Chain

• Kinematics are just trivial straight-line
“tracks”.

• So far, focused mainly on simulation
nodes.
• Still exercises all needed DFP features

(sources, sinks, buffering and parallel)
• But with faster/simpler algorithms.
• Also for now, short-circuit detector

response + deconvolution steps.

• The only Wire Cell imaging algorithm
so far is selecting potentially hit cells.

• Sink node dumps a Bee file.

• wire-cell-tbb/test/test tbb dfp.cxx

Current Wire Cell Toolkit Full Chain

Source of energy
depositions

Drift to
U plane

Drift to
V plane

Drift to
W plane

Diffusion at
U plane

Diffusion at
V plane

Diffusion at
W plane

Waveform at
U plane

Waveform at
V plane

Waveform at
W plane

Merge planes

Digitize to
time slices

Select potentially
hit cells

Sink cells

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 21 / 24

http://www.phy.bnl.gov/wire-cell/bee/set/18872eff-92ec-4e18-a8d0-645b9fc1e5aa/event/0/
https://github.com/WireCell/wire-cell-tbb/blob/master/test/test_tbb_dfp.cxx


Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Status

333 repos, build, packaging, dependencies all “done”
(will evolve as we port the prototype).

337 initial data model established,
needs to grow as more algorithms are ported.

377 only the tiniest, first Wire Cell algorithm ported.
Lots of work needed here, expect to do tuning/refactoring.

337 simulation needs 2 more “D”s: detector response and
deconvolution.

337 parallel DFP working, but needs some small design tweaks.

377 initial end-user configuration, straightforward to flesh out.

377 celltree, Bee, native I/O needs fleshing out.

377 general command line app started.
Waiting on other progress (mostly dfp + cfg).

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 22 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Contributing to the Toolkit
Tookit development:
• Requires significant learning of current structure, good grasp of OO

patterns, understanding OO vs GP paradigms, threading issues.
• Possible overlap with active R&D in the Gaudi world.
• I’d love some help/input here!

Implementing various needed DFP nodes:
• A basic understanding of the toolkit structure required.
• Porting algorithms from the prototype requires reading and

understanding Xin’s code (nontrivial but not impossible), looking for ways
to factor it into well defined DFP nodes joined by well defined data.

• I/O modules need fleshing. They just provide DFP nodes, mostly just a
matter of typing in code.

Hacking your own ideas:
• Build the toolkit, start a package or two.
• Test out own interfaces for data and nodes.
• Work with me to incorporate changes.

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 23 / 24



Prototype vs. Toolkit Design Goals Architecture Packages Status and Summary

Summary

• Wire Cell is transitioning from the very successful working
prototype to a carefully designed toolkit to support
long-term contributions from many developers, parallel
processing and flexible integration with other systems.

• The toolkit supports the data-flow programming paradigm.
• An initial “full chain” (test) application exercises major toolkit

functionality.
• Some structural work on the tookit itself is still needed so API

is not yet fully stable, many fine-grained tests are developed.
• Much effort is needed to “port” prototype algorithms.
→ contributions from others welcome and needed!

Brett Viren (BNL) Wire Cell Toolkit December 4, 2015 24 / 24


	Prototype vs. Toolkit
	Design Goals
	Architecture
	Concepts
	Data Flow Programming

	Packages
	Status and Summary

